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The catalyst-free one-pot synthesis of quinoxaline-2-carboxylate is reported by the reaction of a-halo-b-
ketoesters with 1,2-diamines using an ionic liquid as an environmentally benign solvent. The recovered
ionic liquid was reused for four to five cycles. Moreover, the method is applicable for a variety of 1,2-dia-
mines and a-halo-b-ketoesters.
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Quinoxaline moiety is found in biologically active natural prod-
ucts, in many pharmaceuticals as well as in agrochemicals.1 Some
of the quinoxaline derivatives are found to exhibit a broad spec-
trum of biological activity.1c Many quinoxaline derivatives have a
wide application in dyes,2a as an efficient electroluminescent
material,2b as organic semiconductors,2c as dehydroannulenes2d

and in chemically controllable switches.2e The quinoxaline ring is
also found in antibiotics such as echinomycin, leromycin and acti-
nomycin.3 Due to the distinguished biological and physical proper-
ties of quinoxalines, there has been a tremendous interest to devise
a simple and efficient method for the synthesis of more functional-
ized quinoxaline derivatives.

Commonly, a practicable method comprises the reaction of con-
densation of aryl 1,2-diamines with 1,2-dicarbonyl compounds,4

1,4-addition of 1,2-diamines to diazenylbutens5 and oxidation-
trapping of a-hydroxy ketones with 1,2-diamines.6 Other reported
methods accomplished the synthesis of quinoxalines by the reaction
of 1,2-diamines with phenacyl bromides in solid-phase7 or using
heterogeneous catalyst such as HClO4–SiO2

8 and b-cyclodextrin
(b-CD).9 In addition to this, a-ketoesters,10 3-{[(tert-butoxy)car-
bonyl]diazenyl}but-2-enoats11 and N@N polymer-bound 1,2-dia-
za-1,3-butadiene12 have been reported for the synthesis of
quinoxaline. Moreover, the attempted reaction of a-halo-b-ketoest-
ers with 1,2-diamines also reported to give an uncyclized product.11

Although the reported methods provide good isolated yields,
these methods suffer from tedious work-up, longer reaction time,
use of metal catalyst and narrow scope of substrates. Moreover,
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some of the methods have drawbacks such as unsatisfactory yields,
expensive and detrimental metal reagents. In view of this, there is
still a need to develop a general, efficient and catalyst-free method
for the synthesis of more functionalized quinoxaline derivatives.

Recently, ionic liquids have received much attention due to
their unique properties such as non-volatility, non-flammability,
reusability and great potential as environmentally benign media.13

Some of the ionic liquids have been proved to act as catalysts
because of their high polarity and the ability to solubilize both
inorganic and organic compounds, which can result in the
enhancement of the rate of the reaction. 1-Butyl-3-methylimidazo-
lium tetrafluoroborate [bmim]BF4 (Fig. 1) has gained more popu-
larity and is used in various organic transformations such as
vicinal diamines,14 one-pot syntheses of 2H-indazolo[2,1-b]-
phthalazine-triones15 and hydrative cyclization of 1,6-diynes.16 In
continuation of our work in the development of green methodolo-
gies17 and particularly in the development of non-metallic re-
agents18, herein we wish to report an efficient and mild synthesis
of quinoxalines from a-halo-b-ketoesters using ionic liquid as a
reaction medium in the absence of catalyst. To the best of our knowl-
edge this is the first report for the one-pot synthesis of functional-
ized quinoxalines.

Thus, the reaction of 1,2-phenylenediamine with a-halo-b-
ketoesters in ionic liquid [bmim]BF4 at rt gave the expected quin-
BF4

⊕

Figure 1. Chemical structure of representative ionic liquid (IL).

http://dx.doi.org/10.1016/j.tetlet.2010.05.099
mailto:hmmeshram@yahoo.com
http://dx.doi.org/10.1016/j.tetlet.2010.05.099
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


N

N R

O

OR1R2 = H,CH3, COOMe, NO2

R3 = H,CH3

+R

OO

X

OR1

X = Cl, Br

R = CH3, Ph, CF3, isopropyle

1 2

R1 = Me, Et, Bn

R2

R3

H2N

H2N

R2

R3

NH2

N

R2

R3

R

X

O

OR1

uncyclised product

rt

[Bmim]BF4

ref. 12

3

Scheme 1.

Q+X- 
= [Bmim] BF4 

NH2 NH2

O

R

Br

COOR

Q+  X

1

Figure 2. Plausible mechanistic pathway.
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oxalines in high yield (93%) (Scheme 1). The reaction proceeded
readily at rt and after work-up, the quinoxaline was the sole prod-
uct. However, the reaction did not proceed in common organic sol-
Table 1
Synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid [bmim]BF4

Entry a-Halo, b-keto ester 1,2-Diamine

1

Cl

OO

OEt

1
H2N

H2N

a

2 H2N

H2N

b

3 H2N

H2N

c

4 H2N

H2N

NO2
d

5 H2N

H2N

CO2Me
e

6

2

Br

OO

OBn
H2N

H2N

a

vents such as CH2Cl2, THF and CH3CN. Though the reaction of 1,2-
diamine and a-halo-b-ketoester is reported11 to give an uncyclized
product. The same reaction was forced to give the expected cy-
clized product in the present reaction conditions. This fact clearly
indicated that in the present reaction, the ionic liquid plays the
dual role of solvent and promoter19 (Fig. 2). The reaction in ionic
liquid is more advantageous, because ionic liquid can be recycled
and reused in subsequent reactions. After the separation of the
product by extraction of ionic liquid, it was thoroughly washed
with ether and activated at 80 �C under reduced pressure. The reac-
tivated ionic liquid was used for three cycles without any substan-
tial loss in activity, while the reactivity gradually decreased for the
next few cycles. For example, the reaction of 1,2-phenylenedi-
amine with a-halo-b-ketoesters in ionic liquid [bmim]BF4 afforded
93%, 92%, 92%, 85% and 80%, respectively, over five cycles. Encour-
aged by these results, we have extended this procedure20 for differ-
ent 1,2-phenylenediamines and a-halo-b-ketoesters (Table 1).
Both the chloro and bromo ketoesters gave comparable results
for the formation of quinoxaline. Similarly, the electronic effect
Producta Time (min) Yieldb (%)

1aN

N
O

EtO 60 90

N

N
O

EtO

1b

56 92

N
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O
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1c
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O
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NO2
1d

80 87

1e
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O
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CO2Me
90 84

2a
N

N
O

BnO 50 89



Table 1 (continued)

Entry a-Halo, b-keto ester 1,2-Diamine Producta Time (min) Yieldb (%)
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b N

N
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BnO

2b
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70 86

12 H2N

H2N

CO2Me
e N

N
O

EtO

F3C CO2Me
3e
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18 H2N

H2N

b N

N
O

EtO
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N
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N
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a Reaction conditions: a-halo, b-keto ester (1.1 equiv), 1,2-phenylene diamine (1 equiv), ionic liquid [bmim]BF4 (2 mL) at rt.
b Isolated yields.
c Isomeric products.
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of substituents on 1,2-diamine was studied in detail. The electron-
donating substituents enhance the rate of reaction and gave the
corresponding products in good yields (entries 3, 7, 10, 14, 16
and 19). It was interesting to note that the presence of methyl
group at fourth position of 1,2-phenylenediamine (entries 2, 9
and 18) gave two isomeric products (80:20) depending on the
course of cyclization. This phenomenon was not observed in the
case of electron-withdrawing substituents. This fact may be attrib-
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uted to the electron-donating nature of methyl group which may
favour to increase the nucleophilic character of amine group. It
was noticed that electron-withdrawing substituents suppress the
reaction (entries 4, 5, 11, 12, 20 and 21) but favour the formation
of only one desired product. In addition, the functionalities like es-
ter remain unaffected. We believe that the procedure is simple,
convenient and does not require any aqueous work-up, thereby
avoiding the generation of waste, and may contribute to the area
of green chemistry.

In summary, the ionic liquid was shown to be an effective and
useful alternative reaction medium for the preparation of 2-car-
boxylate quinoxaline derivatives. The present procedure offers sev-
eral unique advantages such as enhanced yields, shorter reaction
times, operational simplicity, mild reaction conditions, ease of iso-
lation of products and a greener aspect by avoiding the need for a
catalyst.
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Compound 6c: Solid. mp 67–69 �C. 1H NMR (300 MHz, CDCl3): d 1.30 (6H, d,
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122.4, 422.9, 141.5, 142.9, 152.6, 155.8, 161.0. MS (ESI) m/z 312 (M+Na), 290
(M+1). IR (KBr) m = 2976, 2932, 2874, 1736, 1532, 1467, 1350, 1243, 1109,
1058, 849. Compound 6e: Semi solid. 1H NMR (300 MHz, CDCl3): d 1.42 (2H, d,
J = 7.28 Hz), 1.50 (3H, t, J = 7.28 Hz), 3.67 (1H, m), 4.0 (3H, s), 4.57 (2H, q,
J = 7.28 Hz), 8.10 (1H, d, J = 8.32 Hz), 8.37 (1H, d, J = 8.32 Hz), 8.82 (1H, s). 13C
NMR (75 MHz, CDCl3): d 14.0, 22.1, 32.3, 51.8, 60.9, 127.5, 130.4, 131.9, 133.4,
141.1, 143.1, 151.8, 154.5, 161.0, 165.9. MS (ESI) m/z 325 (M+Na). IR (KBr)
m = 2935, 2855, 1759, 1616, 1557, 1444, 1319, 1226, 1078, 1021, 850, 755.
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